[CONTRIBUTION FROM THE DIVISION OF CHEMISTRY, RESEARCH DEPARTMENT, CIBA PHARMACEUTICAL PRODUCTS, INC.]

2-(ARYLOXYMETHYL)THIAZOLINES AND PENTHIAZOLINES

CARL DJERASSI¹ AND CAESAR R. SCHOLZ

Received May 16, 1949

In continuation of earlier work (1, 2) on 2-(aryloxymethyl)imidazoline derivatives (I), we investigated the effect on pharmacological activity of replacing one of the nitrogen atoms by sulfur. The present report deals with the synthesis of such 2-(aryloxymethyl)thiazolines (II) and their six-membered homologs, the penthiazolines (dihydrothiazines) (III); the pharmacological evaluation of these compounds will be reported elsewhere by Dr. B. N. Craver and colleagues from our Division of Macrobiology.

The aryloxyacetonitriles (IV) described previously (1) were converted in high yield to the corresponding acetothioamides (V) (Table I) in the usual manner (3) with ammonia and hydrogen sulfide in alcohol solution. Fusion of the thioamides with 2-bromoethyl- or 3-bromopropyl-amine hydrobromide according to the procedure of Gabriel and Hirsch (4) led to the respective thiazoline (II) (Table IV) and penthiazoline derivatives (III) (Table V). In most instances, higher yields were obtained in the penthiazoline series. All compounds were isolated and characterized as their picrates. For biological testing, the picrates were converted to the free bases and thence to the water-soluble hydrochlorides.

$$\begin{array}{ccc} \operatorname{ArOCH}_2\mathrm{CN} \to \operatorname{ArOCH}_2\mathrm{CSNH}_2 & \xrightarrow{\mathrm{Br}(\mathrm{CH}_2)_n\mathrm{NH}_2 \cdot \mathrm{HBr}} & \mathrm{II \ or \ III} \\ & \mathrm{IV} & \mathrm{V} & & \\ \end{array}$$

The reaction presumably involves as an intermediate (A) or (B) (5) rather than (C), since the latter would give rise to the imidazoline (I) by the Forssel reaction (6).

метнор B

As an alternate route to the desired heterocyclics, 2-bromoethyl- (VII) (Table II) or 3-bromopropyl-aryloxyacetamides (VIII) (Table III) were refluxed in

¹ Present address: Laboratorias Syntex, S.A., Laguna Mayran 413, Mexico City, D.F., Mexico.

				1	ANA	LYSIS	
ArO	м.р., °С.	VIELD, %	FORMULA	I	v		s
				Calc'd	Found	Calc'd	Found
Phenoxy ^a	112-113	96	C _s H _s NOS	8.38	8.44	19.17	19.16
o-Toloxy	131-132	91	C ₉ H ₁₁ NOS	7.73	7.84	17.69	18.26
<i>p</i> -Toloxy	118-120	93	C ₉ H ₁₁ NOS	7.73	7.73	17.69	17.22
2,5-Dimethylphenoxy	148-150	86	C10H13NOS	7.17	6.97	16.42	16.45
o-Isopropylphenoxy	120-121	82	$C_{11}H_{15}NOS$	6.69	7.09	15.32	15.20
Thymoxy	134-135	74	$C_{12}H_{17}NOS$	6.27	6.63	14.36	14.37
Carvacryloxy	82-84	79	$C_{12}H_{17}NOS$	6.27	6.80	14.36	14.58
p-Chlorophenoxy	105-107	93	C ₈ H ₈ ClNOS	6.96	6.88	15.90	15.55
m-Chlorophenoxy	124 - 125	93	C ₈ H ₈ ClNOS	6.96	6.84	15.90	16.24
p-Diphenyloxy	186–188	95	$C_{14}H_{13}NOS$	5.76	5.73	13.18	12.93

TABLE I ARYLOXYACETOTHIOAMIDES $ArOCH_2CSNH_2$

^a Fritzsche, J. prakt. Chem. [N.F.] 20, 267 (1879), reported m.p. 111°.

TABLE II

 $2\text{-}Bromoethylaryloxyacetamides} \quad ArOCH_2CONHCH_2CH_2Br$

					ANA	LYSIS	
ArO	м.р., °С.	vield, %	FORMULA	1	4	E	lr
				Calc'd	Found	Calc'd	Found
Phenoxy	75–77	52	$C_{10}H_{12}BrNO_2$	5.43	5.31	30.96	30.71
m-Toloxy	81-83	90	$C_{11}H_{14}BrNO_2$	5.15	4.78	29.37	29.06
2,5-Dimethylphenoxy	99–101	94	$C_{12}H_{16}BrNO_2$	4.90	4.82	27.93	27.99
Thymoxy	56 - 58	43	$C_{14}H_{20}BrNO_2$	4.46	4.47	25.43	25.47
Carvaeryloxy	83-84	68	$C_{14}H_{20}BrNO_2$	4.46	4.74	25.43	25.54
p-Chlorothymoxy ^a	72 - 74	83	$C_{14}H_{19}BrClNO_2$	4.02	3.82		
2,4-Dichlorophenoxy ^b	115-117	89	$\mathrm{C_{10}H_{10}BrCl_2NO_2}$	4.28	4.60		

^a Cale'd: C, 48.22; H, 5.49. Found: C, 48.53; H, 5.61. ^b Cale'd: C, 36.72; H, 3.08. Found: C, 37.16; H, 3.36.

TABLE III

3-Bromopropylaryloxyacetamides $ArOCH_2CONH(CH_2)_3Br$

					ANA	LYSIS	
Aro	м.р., °С.	vield, %	FORMULA	r	٩	F	3r
				Calc'd	Found	Calc'd	Found
Phenoxy	67-69	75	C11H14BrNO2	5.15	5.19	29.37	29.77
<i>m</i> -Toloxy	61-63	80	$C_{12}H_{16}BrNO_2$	4.90	4.66	27.93	27.82
2,5-Dimethylphenoxy	85.5-87.5	79	$C_{13}H_{18}BrNO_2$	4.67	5.08	26.62	26.56
Thymoxy	62-64	64	$C_{15}H_{22}BrNO_2$	4.27	4.20	24.35	24.29
Carvaeryloxy	oil	73	$C_{15}H_{22}BrNO_2$	4.27	3.95	24.35	24.05
p-Chlorothymoxy ^a	66-68	81	$C_{15}H_{21}BrClNO_2$	3.86	3.85		1
2,4-Dichlorophenoxy ^b	89-91	82	$\mathrm{C_{11}H_{12}BrCl_2NO_2}$	4.11	3.84		

^a Calc'd: C, 49.67; H, 5.84. Found: C, 50.13; H, 5.81. ^b Calc'd: C, 38.74; H, 3.55. Found: C, 38.98; H, 3.68.

			TABLE IV		N N	-CH ₂				
		2-(Акуlохумет	THTL)THIAZOLINES A	rocH2		-CH3				
			PICRATES					HYDROCHLORIDES		
				 	ANALYSI				Analys	^d si
ArO	M.P., °C.	Procedure and Yield	Formula	Z		s	м . р., °С. ^а	Formula	ប	
				Calc'd	puno _H	Found	3		b'sløð	punoA
Phenoxy	177-179	A (20 min., 110°), 32%; B agz. C 897	C ₁₆ H ₁₄ N ₄ O ₈ S	13.271	3.117.	597.9	5 147-149	C ₁₀ H ₁₂ CINOS	15.431	5.34
o-Toloxy	166-168	A (5 min., 160°), 30%	C ₁₇ H ₁₆ N ₄ O ₈ S	12.841	3.337.	35 7.5	9160-163	C ₁₁ H ₁₄ CINOS	14.551	4.01
m-Toloxy	188-190	B, 36%	C ₁₇ H ₁₆ N ₄ O ₈ S	12.841	2.737.	357.4	9 158-160	C ₁₁ H ₁₄ CINOS	14.551	4.71
p-Toloxy	174-176	A (8 min., 140°), 49%	CITH 16 N4 OsS	12.841	2.987.	356.8	3 165-168	C ₁₁ H ₁₄ CINOS	14.551	4.85
2, 5-Dimethylphenoxy .	176-178	A (5 min., 160°), 26%; B,	C ₁₈ H ₁₈ N ₄ O ₈ S	12.441	1.887.	12 7.2	7 176-180	C12H16CINOS	13.761	3.95
o.Tsonronvlnhenovv	165-167	24% A (15 min 130°) 25%	C., H., N.O.S	12.061	2.256	9017	7180-181	C.,H.,CINOS	13.051	3, 19
Thymoxy	167-168	A (20 min., 140°), 42%; B,	C20H22N4OS	11.711	1.286.	707.1	6 149-151	C ₁₄ H ₂₀ CINOS	12.41	2.45
	167 160	8% A (10 min 150°) 9007.		11 7 11	1 75.6	70 A 0				
Carvaci yloxy	COT_101	B, 9%				<u></u>	 5			
m-Chlorophenoxy	185-187	A (15 min., 135°), 63%	C16H13CIN4O8S	12.27	2.657.	026.8	9172-174	C10H1CINOS	26.842	6.43
p-Chlorophenoxy	168-169	A (20 min., 140°), 32%	C16H13CIN4OsS	12.27	2.287.	02 6.6	9 179-181	C10H11CINOS	26.842	0.26
2,4-Dichlorophenoxy	185-187	B, 20%	C ₁₆ H ₁₂ Cl ₂ N ₄ O ₈ S	11.401	1.806.	536.6	+			
p-Diphenyloxy	183-185	A (10 min., 160°), 43%	C22H18N4O8S	11.24	0.996.	43 6.7	1 150-154	C16H16CINOS	11.601	1.99
^a All melting points pounds appear to give	were de soluble (termined in sealed capillarie complexes with silver nitrate	es. ^h These values we e or mercuric nitrate	re obta	ined by	y com	oustion an	alyses, since many	of the	-moa

TABLE IV

696

CARL DJERASSI AND CAESAR R. SCHOLZ

			TABLE V							
		2-(Актіохтметнті)рі	enthiazolines Af	OCH1C	S C S	H ³ C	H,			
			PICEATES					HYDROCHLORIDES		
					NALYSIS				Anal	ysis
АкО	M.D., °C.	Decodina and Vield	Formula	z		s	M.p., °C.	Formula	0	_
	(dec.)			b'slaD	Found Calc'd	Found			Calc'd	bauoJ
Phenoxy	177-179	A (10 min., 170°), 58%; B,	CIrH16N4O8S	12.8415	2.657.3	56.791	62-164	C ₁₁ H ₁₄ CINOS	14.55	14.7
a-Toloxv	158-160	37%; C, 10% A (5 min., 160°), 69%	C ₁₈ H ₁₈ N,O ₈ S	12.44 15	2.62 7.1	27.461	86-187	C ₁₂ H ₁₆ CINOS	13.75	13.9
m-Toloxy	168-170	B,48%	C18H18N,O8S	12.44 1	07 7.1	27.31	46-147	C ₁₂ H ₁₆ CINOS	13.75	13.7
p-Toloxy	151-153	A (10 min., 150°), 64% A (5 min., 160°), 67%; B.	C1,4H18N4O,S C1,4H20N4O,S	12.441	2.537.1 I.616.9	27.061 07.131	75-177	C12H16CINOS	13.05	13.3
 a-Dumentylphenoxy b-Isopropylphenoxy Themoxy 	155-157 183-185	51% 51% A (20 min., 135°), 62% A (10 min., 140°), 68%; B,	C20H22N40S C21H21N40S	11.71 11.11	2.066.7 1.456.5	07.121	93-195 66-170	C14H20CINOS C15H22CINOS	12.40 11.82ª	12.2
Carvaeryloxy	167-169	64% A (15 min., 120°), 20%; B,	C21H24N4O5S	11.381	1.01 6.5	16.381	02-106	C15H22CINOS	11.82	12.2
m-Chlorophenoxy	180-181	52% A (15 min., 130°), 54% A (10 min. 140°), 57%	C17H1,CIN,O,S	106.11	2.086.8	17.14	(48-150 305-207	C ₁₁ H ₁₃ Cl ₂ NOS C ₁₁ H ₁₃ Cl ₂ NOS	12.74ª 25.49	13.0 25.3
<i>p</i> -Chlorophenoxy2,4-Dichlorophenoxy	101-192	B, 40%	CITH14CI2N40.8S	11.091	1.296.3	56.65	66-168	C ₁₁ H ₁₂ Cl ₃ NOS	34.02	33.7
<i>p</i> -Chlorothymoxy	191-193	B, 57% A (10 min., 160°), 84%	C21H22CIN405 C22H20N406S	10.031	0.506.2	855.70 66.48	180-190	ClifH18CINOS	11.09	11.4
a These analyses wer	e determ	ined by titration with merce	uric nitrate, while th	ie remain	ing one	s were (arried o	ut by combustion		

2-(ARYLOXYMETHYL)THIAZOLINES AND PENTHIAZOLINES

697

toluene solution with phosphorus pentasulfide by a modification of Salomon's synthesis (7). In a few instances [e.g., 2-(carvacryloxymethyl)penthiazoline] this method was superior to A. The required amides were prepared (8) via the corresponding aryloxyacetyl chlorides (VI).

$$\begin{array}{cccc} ArOCH_2COCl & \longrightarrow & ArOCH_2CONH(CH_2)_n Br & \stackrel{P_2S_5}{\longrightarrow} & II \text{ or } III. \\ VI & & VII & n = 2 \\ & & VIII & n = 3 \end{array} \\ & & & \text{METHOD } C \\ ArOCH_2CSNH_2 & + & Br(CH_2)_n X & \longrightarrow & II & \text{or } III \\ V & & n = 2 \text{ or } 3 \\ & & X = Br, Cl \end{array}$$

The synthesis was first published by Gabriel (9) and proved to be inferior to the other methods (A and B) when tested with phenoxyacetothioamide.

$\mathbf{EXPERIMENTAL}^2$

Aryloxyacetothioamides (V). The following procedure (3) gave excellent results: Ammonia was passed through 20 cc. of methanol in a pressure bottle cooled in ice, until 2 g. had been absorbed, followed by hydrogen sulfide until an additional gain in weight of 4 g. was observed. Four grams of aryloxyacetonitrile (IV) (1) was added, the bottle closed and then heated at 70-80° for one hour. The thioamides usually crystallized on cooling, but water was added in every instance to ensure complete precipitation of the product. Recrystallization was effected from ethanol. The physical constants and yields are summarized in Table I.

2-Bromoethylaryloxyacetamides (VII). Essentially the method of Leffler and Adams (8) for benzamides was used, a typical example being described below. The physical constants of the various derivatives are given in Table II.

A solution of 10.2 g. (0.05 mole) of 2-bromoethylamine hydrobromide in 75 cc. of water was placed in a flask equipped with a dropping-funnel and an efficient Hershberg stirrer, and cooled to 15° with running water. A solution of 0.055 mole of the aryloxyacetyl chloride [prepared from the corresponding acid with thionyl chloride in the absence of a solvent (10)] in 25 cc. of benzene was added, the stirrer was started, and 4.6 g. (0.115 mole) of sodium hydroxide in 95 cc. of water was dropped in over a period of five minutes. After stirring for one hour at 15° and an additional hour at room temperature, ether was added, the organic layer was washed with sodium carbonate and water, dried and evaporated. The crystalline residue was triturated with hexane and filtered. The material thus obtained was usually of nearly analytical purity.

3-Bromopropylaryloxyacetamides (VIII). These were prepared exactly as above except that 10.95 g. (0.05 mole) of 3-bromopropylamine hydrobromide was used. The pertinent information regarding these compounds is given in Table III.

2-(Aryloxymethyl)thiazolines (II) and penthiazolines (III). Method A. The optimum conditions for the fusion of 0.03 mole of thioamide and 0.025 mole of bromoalkylamine hydrobromide (without solvent) had to be determined for each case and are listed in the appropriate columns in Tables IV and V. With few exceptions (e.g., the 2-diphenyloxymethyl derivatives, where the melt was directly dissolved in ethanol and pieric acid added), the mixture

² All melting points are corrected. The microanalyses were carried out by Mr. George L. Stragand, Microchemical Laboratory, University of Pittsburgh. Thanks are due to the Misses Edwina Leathem and Frances Hoffmann for technical assistance.

698

was partitioned between ether and hydrochloric acid, the latter made alkaline with ammonia and re-extracted. In particularly dark colored runs, this procedure was repeated. The desired product was always crystallized as the picrate from ethanol solution.

Method B. Salomon's synthesis (7), which involved melting an amide with phosphorus pentasulfide, was improved by the introduction of toluene as solvent. The reaction was carried out by refluxing 0.002 mole of bromoalkyl aryloxyacetamide (VII or VIII) with 90 mg. of phosphorus pentasulfide in 10-15 cc. of dry toluene for four hours. After dilution with ether, the product was isolated as in A.

Preparation of hydrochlorides. The picrates were converted into the free bases using lithium hydroxide (11) and either ether or chloroform. The heterocyclic amine was dissolved in anhydrous ether (the solution filtered if necessary) and treated with the calculated amount of 7 N ethanolic hydrogen chloride, whereupon the hydrochlorides precipitated. None of the samples were recrystallized in order to avoid any possible ring opening (7). The melting points and analyses are reported in Tables IV and V.

SUMMARY

A series of 2-(aryloxymethyl)thiazolines and penthiazolines have been synthesized by (A) fusion of the appropriate thioamide with a bromoalkylamine hydrobromide or (B) reaction of a bromoalkyl aryloxyacetamide with phosphorus pentasulfide.

SUMMIT, NEW JERSEY

REFERENCES

- (1) DJERASSI AND SCHOLZ, J. Am. Chem. Soc., 69, 1688 (1947).
- (2) DJERASSI AND SCHOLZ, J. Org. Chem., 13, 830 (1948).
- (3) GABRIEL AND HEYMANN, Ber., 23, 157 (1890); GOLDBERG AND KELLY, J. Chem. Soc., 1372 (1947).
- (4) GABRIEL AND HIRSCH, Ber., 29, 2609 (1896).
- (5) SCHLATTER, J. Am. Chem. Soc., 64, 2722 (1942).
- (6) FORSSEL, Ber., 25, 2132 (1892).
- (7) SALOMON, Ber., 26, 1327 (1893).
- (8) cf., LEFFLER AND ADAMS, J. Am. Chem. Soc., 59, 2252 (1937) and succeeding papers.
- (9) GABRIEL AND HEYMANN, Ber., 24, 783 (1891); PINKUS, Ber., 26, 1077 (1893).
- (10) HIGGINBOTHAM AND STEPHEN, J. Chem. Soc., 117, 1534 (1920).
- (11) BURGER, J. Am. Chem. Soc., 67, 1615 (1945).